Sentinel data fusion for official agriculture

statistics in Hungary

Daniel Marton KOVACS, Istvan Peter KOVACS, Luca GATTI, Levente RONCZYK, Agnes PATAY

Introduction

- Objectives:
 - Demonstration of the crop mapping capabilities of Sentinel data
 - Grassland detection
 - Winter cereal separation
 - Wheat
 - Barley
- Study area: HU23 region Southern Transdanubia, Hungary
 - o 14 197.86 km²
 - o 3 counties as statistical subunits (Baranya HU231, Somogy HU232, Tolna HU233)
- Joint efforts:
 - Hungarian Central Statistical Office / sarmap SA, Switzerland / University of Pécs, Hungary
- ESA financed tender
 - "Sentinel data integration into the official statistics of the Hungarian Central Statistical Office (HCSO)".

Data and methods I.

- Sentinel-1 data
 - O GRD files for intensity
 - 02/09 13/12, 2019
 - 01/06 07/10, 2020
 - O SLC files for coherence
 - 02/09 20/10, 2019
 - 06/03 28/06, 2020
- Sentinel-2 data
 - o March August 2020.
- Region boundaries: NUTS
- CLC50 Refined version of CLC100, available for Hungary
 - Built-up area and water bodies
- Semi-automated workflow (Hungarian HPC system) -

Data and methods II.

- Preprocessing phase Mapscape 5.2. (semi-automated)
 - Sentinel-1 processing to DPSVI
 - o Sentinel-2 processing to NDVI
- Manual (main) phase Mapscape Basic
 - Fusion of DPSVI & NDVI components (20 meters resolution)
 - Implementation of user datasets
 - Decision tree generation (Boolean logic)
 - Further refinements, pixel-based filtering.
- Post-processing in QGIS 3.10.
- Field level validation, using mobile GIS applications (QField, Mergin)
- Different approach in our methods and the processes of the HCSO.
 - Remote sensing vs. surveys and farm subsidies.

Preliminary results

- Base map of land cover types
 - o Water bodies
 - Permanent vegetation
 - o Settlements
 - o Croplands
- Croplands Winter Summer crop separation
 - o Mean NDVI values from April and June
 - o Different markers (SoS, PoS, EoS)
- Winter crop identification
 - o Based on sowing dates
 - o Distinct ripeness dates
- Grasslands
 - o Remaining unmasked area

Results - Winter wheat and barley

- Summer-winter crop separation -> winter wheat / winter barley identification
- Rapeseed fields are also easy to detect by this method
- 8000 fields of wheat, 3000 fields of barley

Acreage of winter barley in hectares - 2020

- Best result:
 - Wheat: 3.9% difference in Tolna county
 - Barley: 6.4% difference in Somogy county
- Regional average figures:
 - o Surplus Wheat: 1.9%, Barley: 10%

Acreage of winter wheat in hectares - 2020

Results - grasslands

- 7500 separate polygons (meadows, grazing lands, fallow lands and abandoned fields)
- ~1500 ha regional deficit in our calculations (~2%)

Accuracy assessment - cereals

- Based on a dataset from a farm operator
- 68 winter cereal fields checked
 - o 48 Barley
 - o 10 Wheat
 - o 10 other (e.g. fallows)
- Possible errors:
 - Grassland with very peculiar cultivation (temporal similarity to cereals)
 - O Errors in farmers' data
- Validation difficulties and limitation in offseason

Accuracy assessment - grasslands

Grassland validation - distribution of results (accuracy: 83%)

- 100 randomly selected polygons throughout the region
- Individual on-site confirmation
- Errors:
 - O Alfalfa
 - **o** Fennel
 - o Millet

Summary

- Pilot project with overall promising results
- Harmonization of land cover categories and HSCO nomenclature
- When optimized, it can be a viable solution for aiding agricultural statistics at HSCO
- Implementing a dynamic crop mapping would benefit the detection of cereals
- Multi-year datasets could improve the accuracy of the grassland detection
- Implementation of auxiliary datasets (parcels boundaries)
- Limitations and errors:
 - The effect of cloud cover on S-2 images
 - The spatial limitation of the sensors

Outlook

- New promising approach with ML algorithm
 - o Exclusivity to SAR data, possible full-automation
- Nationwide monitoring is possible
- Finalised uptake process:
 - o Sufficient financial background
 - o Adequate human resources
 - o Proper infrastructure
 - o End-user engagement

PÉCSI TUDOMÁNYEGYETEM UNIVERSITY OF PÉCS

Thank You for your attention!