

DGINS 2021 -Official Statistics from Satellite imagery

Tim Linehan (<u>tim.linehan@cso.ie</u>) Methodology Division Central Statistics Office(Ireland) 28th October 2021

Prologue...

Some of our output

Introduction – CSO Remote Sensing and Satellite Imagery Group

Introduction

The CSO and Satellite Imagery

- CSO has a major focus on secondary and "big" data sources satellite data a key example of this
- Eurostat/UN drive for satellite statistics
- In early 2019, CSO Satellite Imagery Group was set up around 15 members from different areas of the office
 - A mixture of experienced practitioners and those with an interest in producing official statistics from satellite imagery
 - Objective: Can official statistics be produced from satellite imagery?

Introduction

Four Areas of Interest

- Initial vegetation index feasibility work
- Light emission statistics released
- Gas emission statistics Sentinel-5P
- Transport statistics (shipping) collaborative work with CSO Transport, ICHEC and Statistics Flanders
 - Also uses AIS (shipping transponder) data

2. Artificial Light Statistics

How light statistics are produced

The data collection and analysis process

- NASA VIIRS-DNB satellite data downloaded
 - Light emissions statistics from 2012 onwards
- VIIRS-DNB is an instrument on the Suomi-NPP satellite
- Data has been pre-processed for quality by NOAA
- The satellite data on light emissions is geocoded
- CSO overlays the light emissions data with OSI maps
- Statistics are validated then produced

NASA Suomi-NPP Satellite

The data source

VIIRS-DNB dataset has the following attributes

- Monthly dataset from US NOAA
- Latitude and longitude of measurements
 - 1km x 1km grid resolution
- 2. The average monthly composite cloud-free radiance figure (measures light emissions)
- 3. The number of cloud free days in each month
- 4. Built in quality assurance cloud removal

Derivation of output

CSO derives output from the dataset in following steps:

- So we have monthly cloud free data
- The satellite imagery is then overlayed with OSI map boundary files (counties etc) in R
- Summary light emission statistics are generated in R
- R mapping tools were then used
- R advantage is open source can be run on a desktop PC
- No commercial/specialist software used
- Results are validated refer to Deep Sky reserves

Light emissions by County

County level statistics

Counties with high and low levels of emissions

Ta	ble 2: Light emissions (nW/		
County	January 2015 light emissions	January 2019 light emissions	Change in emissions
DUBLIN	14.678	11.531	-27.30%
LOUTH	2.275	1.695	-34.20%
KILDARE	2.079	1.494	-39.20%
KERRY	0.766	0.576	-33.00%
MAYO	0.79	0.545	-45.00%
LEITRIM	0.772	0.516	-49.60%

Light emissions by Electoral Division Average Light Emissions by Electoral Division, January 2019

Electoral Division level statistics

Top 5 electoral divisions for artificial light emissions

ED	Electoral Division	COUNTY	January 2015	January 2019
268115	PEMBROKE WEST A	DUBLIN	195.582	156.42
268111	PEMBROKE EAST B	DUBLIN	133.821	122.251
268141	ROYAL EXCHANGE B	DUBLIN	152.25	103.88
268116	PEMBROKE WEST B	DUBLIN	90.747	100.383
268140	ROYAL EXCHANGE A	DUBLIN	138.228	98.657

3. Gas emissions

Nitrogen Dioxide NO2 Sentinel 5P

We chose NO2 as the gas for our emissions project

- NO2 emissions are of considerable public interest
- Sentinel-5P NO2 data is freely available via the Copernicus Hub (7km x 7km)
- Our aim was to produce statistics for NO2 levels in Ireland using the Sentinel-5P data using R.
- We are workign with the EPA and with other agencies in seeing how applicable these results are
- Ground measurement is best but role for satellites

Example output – NO2 map Northern Europe

4. Lessons Learned

Lessons learned

Remember the following

- Satellite measurement is a powerful and frequent source of data with an immense coverage area
- However, the usual limitations of a satellite apply limited resolution and the complications that inevitably follow when attempting to measure a ground based phenomenon from the air
- Atmospheric effects must also be considered.
- Validation is very important

Acknowledgements

Acknowledgements

External acknowledgements

- The Earth Observation Group (EOG) of the United States National Oceanic and Atmospheric Administration (NOAA)
- The Irish Centre for High End Computing (ICHEC);
- Kevin Delaney, Gavin Smith and Dermot Burke The Environmental Protection Agency
- Kevin Lydon Ordnance Survey Ireland
- Dr. Andrew Brown, The English Environment Agency
- Michael Ruesens and Marc Callens, Statistics Flanders
- Markie Muryawan, United Nations

Acknowledgements

CSO Acknowledgements

- Group members: Paul Alexander, Lianora Bermingham, Sinead Bracken, Aidan Condron, Dermot Corcoran, Niall Delany, Cathal Doherty, Joseph Goode, Marco Grimaldi, Kathleen Hanney, Marc Harrington, Patrick Kelleher, Tim Linehan (Chair), Mervyn O'Luing, Paul Rockley, Sam Scriven, Nova Sharkey, Mary Smyth, Vytas Vaiciulis
- CSO : Paul M. Crowley, John Dunne, Elaine O'Mahoney, Ciaran Dooly, Francesca Kaye, Paul Morrin, Tomas Murray, John Flanagan, Nele van der Wielen, Justin McGurk, Patrick Kelleher, Richard Murphy, Colette Keane, Charlotte Barrett, Conor O'Sullivan, Helen Cahill, Aeidin Sheppard, Ken Kennedy, Carol Finlay, Brendan Halpin, Jonathan Shanahan and the Innovation Week Team.

Any questions:

Tim.linehan@cso.ie